

Universal Transmitter SL340

The SL340 is a field configurable isolating transmitter/converter providing true 3-way galvanic isolation up to 2500Vrms for use with industrial probes and millivolt signals. Input and output are set using the SL300 programmer connected to a PC USB via the COA703 interface. The connection socked is accessed under a door flap on the front of the module. Key features of the SL340 are;

- Small case style.
- Wide range AC/DC power supply.
- > Input linearisation.
- > User engineering units and scaling.
- > Differential and single ended input.
- Switch-able input loading
- Reverse and direct acting
- Signal limiting.
- Programmable sensor supply.
- Switch-able input filter (fast / slow)

ref

Differential

Standard

Ordering Detail

Order Code Supply Voltage

SL340-10 80-300Vdc / 80-280Vac 50/60Hz SL340-20 10V-60Vdc / 16-42Vac 50/60Hz

General Specifications

Size: 12.4W x 113H x 108D (mm).

Mounting: Clip for 35mm DIN-Rail.

Housing material: ABS / Polycarbonate blend
Connection: Pluggable screw terminals.

Weight: 85g (including packaging).

Protection class: IP40.
Input accuracy: < 0.1%.
Output accuracy: < 0.1%.
Linearity: < 0.1%.
Operating temperature: 0...+65°C.
Temperature drift: 0.01% per °C.

Auto input ranges: Up to ± 250 mV or 500mV Overload continuous: 20 x times input range MAX.

Noise immunity: 130dB CMRR. Input/output isolation: >2.5kVrms.

EMC: AS/NZS 4251.1 (EN 50081.1)

Millivolt Input

Minimum input: -250mV

Maximum input: 624mV

Maximum input range: 500mV

Maximum input offset: 50% of range

Measurement unit: mV

Measurement type: Standard or differential

Common mode range: -3V to +6V Engineering Scale: minimum,

maximum and

Shape: Linear

or 101 user points. $> 1M\Omega$.

Input impedance: $> 1M\Omega$. switch-able $30k\Omega$ shunt.

Response time: 50mS fast

500mS slow.

AUX supply output: 0.01mA to 10.8mA (3.5V@10mA)

0.1V to 16V 110mA@10V).

Process Output

Output drive:

Output calibration is entered as minimum and maximum of

input engineering range.

Output can be set as direct or reverse

acting. Signal limits can be entered and enabled or disables as required.

Ranges: 1mA, 10mA, 20mA,

1V, 2V, 5V, 10V, 20V 10mA into 0 - 1.8kΩ

V/mA Output

20mA into 0 - 800Ω.

Load change effect: < 0.05% (current limited to 22mA)

Thermocouple Input

Enter required maximum and minimum in measurement unit, 101 point linearisation is automatically calculated loaded for required range.

Types: B, E, J, K, N, R, S

Measurement unit: °C, °F, °K Input impedance: switch-able 30k

shunt.

Burn out: Upscale, Downscale,

None.

Link 5 and 7 for burnout options.

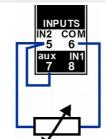
Response time: 50mS fast / 500mS

slow

Resistance Transmitter

 $\begin{array}{ll} \mbox{Minimum span:} & 1\Omega \\ \mbox{Maximum span:} & 50 \mbox{k}\Omega \\ \mbox{Measurement unit:} & \Omega, \mbox{k}\Omega \\ \mbox{Measurement type:} & 2 \mbox{ wire} \\ \end{array}$

connection.


Engineering Scale: minimum, maximum and

unit

Shape: Linear or 101 user points

Response time: 50mS fast

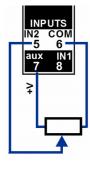
500mS slow

+ OUT

Potentiometer Transmitter

Minimum input: 0%
Maximum input: 100%
Measurement unit: %Pot

Measurement type: 3 wire connection.


Engineering Scale: minimum, maximum and unit

Shape: Linear

or 101 user points

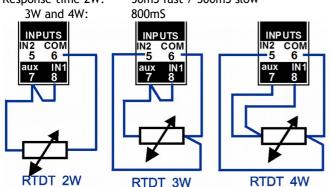
Input impedance: $> 1M\Omega$ Response time: 50mS fast 500mS slow

AUX supply output: 0.5V

 NESS Corporation
 Universal Transmitter
 SL340
 Tel:
 (02) 8825 9295

 APCS division
 Drawing:
 DS34011 Issue:
 1 3/05/16
 Fax:
 (02) 8825 9290

www.apcs.net.au



RTD Input

Enter required maximum and minimum in measurement unit, 101 point linearisation is automatically calculated and loaded for required range.

Types: pt100, pt1000
Measurement unit: °C, °F, °K

Response time 2W: 50mS fast / 500mS slow

Strain Gauge Transmitter

Measurement unit: mV

Measurement type: Differential.
Common mode range: -3V to +6V
Tare Function: Button under

lid.

Engineering Scale: minimum,

maximum and

INPUTS

unit. Shape: Linear

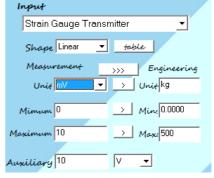
or 101 user points

Input impedance: $> 1M\Omega$

switch-able 30k shunt.

Response time: 50mS fast 500mS slow

AUX supply output: 0.01mA to 10.8mA (3.5V@10mA) 0.1V to 16V (110mA@10V)

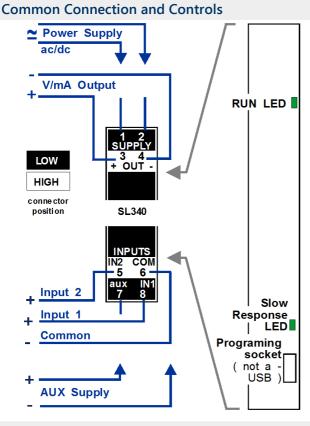

 $Range = \frac{Actual_Load}{Capacity} \times Sensitivity \times Excitation$

A load cell of 1000 kg capacity, with 2mV/V sensitivity and 10Vdc excitation has an "actual load" is 500 kg max., then $Range = \frac{500\,kg}{1000\,kg} \times 2\,mV/V \times 10\,V = 10\,mV$.

The SL340 would be programmed as;

After programming the SL340 the top mounted tare button MUST be pressed while measurement system is unloaded.

For strain gauge function without using the top mounted tare



button use *mV Transmitter* in differential mode.

Universal Input

The mV input range can solve measurement problems such as the following 4 wire resistance example below.

Input

Four Wire Resistance example

I wish to measure 0 to 10Ω but the resistance input is only a 2 wire connection. This means the measurement is affected by the lead resistance.

If I connect the input using the RTDT 4W connection, set the auxiliary output to 10mA and measurement to 100mV differential the output will be directly proportional to the resistance measured.

In the interest of development and improvement, APCS reserve the right to amend, without notice, details contained in this publication. APCS will accept no legal liability for any errors, omissions or amendments